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INTROII1JCTION

IFor many decades, plate waves have been the subject of NDE research and application. Recently,
the accumulated knowledge has been technology transferred to actuation mechanisms. ‘] ‘hese waves, aso
known as guided waves or 1.amb waves, can be formed in two distinct modes. symmetric and
antisymmetric, with a fundamental as well as high order harmonic modes. T'he specific modes are
defined by their vibration characteristics in relation to the plate geometry, e.g., the symmetric mode is
associated with a symmetric motion over the plate center plane. initialy, these waves were applied for
NDE of metallic structures [1]. After leaky Lamb waves were first observed in composite materials [2],
the spot light of the plate waves research activity was turned toward materials with orientation
dependent properties. Many researchers have investigated solutions to the wave equations for
propagation in anisotropic materials and as a result efficient approximation techniques and numerical
solutions were developed. Using experimental methods, such as the leaky 1.amb wave, pulsed pitch-
catch and contact coupling, measurements accurately corroborated the theoretical predictions for the
various plate wave modes [3]. These results led to the ability to determine the elastic properties of
composite materials as well as adhesive bonded joints.

Generaly, as can be seen from Figure 1, the surface particles motion in a traveling flexural plate
wave mode (i .c., anti symmetric mode) arc moving in an ellipt ical motion around their original location.
When the particles move upward they also move backward in reference to the propagating wave (the
wave moves right while the upward-rotating particle moves left). This backward movement can be
harnessed to propel parts that are in an intimate contact with the vibrating plate. This effect has formed
the basis for a new actuation mechanism also known as ultrasonic, solid state or piczoelectric motors [4].
"The rotated object is called the rotor and the drive vibrating plate is called the stator.

UL TRASONICMOTORS

The development of ultrasonic motors came at a time when there is an increasing demand for
miniaturized mechanisms and they are offering a new form of actuation with potential capabilities that
cannot be obtained with conventional actuators. NASA, in its efforts to reduce the size and mass of
future spacecraft, is strongly interested in miniature actuators. The miniaturization of conventional
electromagnetic motors is limited by manufacturing constraints and loss of efficiency. Generally,
electromagnetic motors compromise speed for torque using speed reducing gears. The use of gears adds
mass, volume and complexity as well as reduces the system reliability due to the increase in number of
the system components. Ultrasonic motors are offering an effective aternative drive mechanism for




miniat urc instruments, provide high torque density at low spced, high holding torque, simple
construction, quiet operation and quick response, These motors already emerged in commercial
products, such as cameras, compact paper handling devices and watches. Under the Mars Lander
Robotic Program, JP1. iscurrentl y considering the usc of these motors for the actuation of a robotic arm
that will perform sample collection tasks on the surface of Mars. A study is current] y underway to
develop such motors for operation in space environment, i.e., operate effective] y and reliably in vacuum
and low temperatures down to cryogenic levels. The theoretical modeling and prototype development
arc conducted with M1°1". I‘'urther, a technology transfer is being explored with alocal small company
(QMI, Costa Mesa, CA) under a Technology Cooperative Agreement.

P RINCIPAIL OF OPERATION

Ultrasonic motors produce a gross mechanical motion by amplifying repeated micro-deformations
that arc induced by an active material (usually a piezoclectric wafer). As shown in Figure 1, the induced
micro orbital-motion in the stator (at the point of contact with the rotor) is rectified by the frictional
interface (rotor/stator) to produce macro-motion of the rotor. Teeth, arranged as a ring on the stator, arc
used to enhance the speed of the particles propelling effect. 1*he rectification of the micro-motion at the
intcrfacc is provided by pressing the rotor on top of the stator and the fricti onal force between the two
causes the rotor to spin. This motion transfer operates as a gear and it leads to a rotation speed (up to
about 500 rpm) that is much lower than the wave frequency (1 0-80 KHz).

To generate traveling waves, a piczoceramic wafer poled internally is a structure that consists of
quarter wavelength out-of-phase zones. This poling pattern is also intended to eliminate extension in the
stator and maximize bending. T'wo poled groups are formed on the wafer and arc driven at 90° out-of-
phase to produce two orthogonal disk modes. Using sinusoidal and cosinusoidal electric drive signals,
these orthogona modes arc controlled to generate either forward or backward rotation.
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Figure 1: Principle of operation of a rotary traveling
wave motor.
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FUTURE DIRECTION OF THE TECHNOLOGY

'The evolution of plate waves from NDE to actuation technology has offered a dual-use of the plate
wave theoretical modeling base, which was initially developed for ND1:. Specific concern in modeling
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ultrasonic motors is the mcchanical interaction at the stator rotor interface and as this issue is better
handled the design of optimized motors is becoming increasing feasible.

Currently, these motors arc commercially available from Japanese manufacturers and in an
experimental form from Europecan manufacturers. Al | new Cannon cameras arc now equipped with this
motor type as the drive of the zoom lens. New applications at e increasingly being reported, including
CD-ROM disk drives, as well as other hardware that support the computer technology. Unfortunately,
thereis still no American manufacturer of ultrasonic rotary motors and the J]’]. effort is hoped to form
such a manufacturing capability.

The stall torque (measure of the motor capability), that can bc produced by commercial motors, is
in the range of 0.1 to 10 in-lb. Efforts are exerted to expand this range at both ends, namely to increase
tbc torque capability to higher levels as well as to produce actuators for micro-electromechanical
systems (M EM S) [5]. M| iMS is the fasted growing segment of the actuation technology and, in the
coming years, it is anticipated to become a multi-billion dollar industry. “Bug”-like devices are being
developed for a wide spectrum of applications that used to be considered as science-fiction. Such
applications include medical micro-operation of internal organs, support search and rescue missions in
earthquake and other disasters, smart structures, activation of aerospace and automotive devices and
micromachining tools.
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INTRODUCTION

The use of composite materials has increased steadily during the past two decades,
particularly for aerospace, underwater and automotive structures. This is largely because
many composite materials exhibit high strength-to-weight and stiffness-to-weight ratios, which
make them ideally suited for use in weight-sensitive structures. The elastic properties of
composite materials may be significantly different in specimens manufactured under the same
general specifications and the bulk material properties may be different from those of the
lamina. The elastic properties degrade as a result of aging, environmental and other effects
(e.g., matrix cracking) resulting in overstress and eventual failure of the material. The elastic
properties determine the performance of the material and it is necessary to assure the
conformance of these properties with design requirements. Convent ional destruct ive
techniques for determining the elastic stiffness constants can be costly and often inaccurate.
Thisis particularly true for the through-the-thickness properties. Nondestructive
determination Of these properties offers a better alternative for material characterization and
for assuring structural performance.

A systematic analytica method proposed by Mal, Lih and Bar-Cohen [1], employing
the leaky Lamb wave (LLLW) phenomenon, has been found to be an effective method for the
characterizat ion of the elastic constants. The model assumes that the composite material
consists of transversely isotropic layers and the transmission of the ultrasonic signals requires
the use of water immersion or water injection through squirters. Dispersion curves (phase
velocity vs. thickness times frequency) are measured and are used to determine the elastic
constants using an inversion algorithm. The water coupling requirement restricts the field
applicabilit y of the method and limits the number of constants that can be measured.
Particularly, the constant c;, is difficult to determine due to practical difficulties that are
associated with setting up experiments with small incidence angles. The application of a
contact-coupled guided-wave method offers the potential for a practical riondestruct ive
characterization method.
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Figure 1. Definition of the geometrical variables of the symmetric and antisymmetric guided
wave modes.

The theoretical and experimental studies of guided wave propagation in composites
have grown considerably in recent years [2, 3]. A homogeneous composite laminate with the
axis of symmetry parallel to the surfaces (Figure 1), supports the formation of two modes of
propagation: symmetric and antisymmetric. The lowest symmetric (extensional) and
antisymmetric (flexural) mock are the easiest to measure in an ultrasonic experiment and their
velocity value can be used to determine certain material constants. German [4] has developed
an ultrasonic technique which is based on a contact type transducer-pair arrangement that can
be used to measure the dispersion curves of the low frequency flexural mode, and to
determine the elastic properties. Unfortunately, the flexural wave signals are usually mixed
with reflected signals from the boundary if the lateral dimensions of the specimen are small in
relation to the wavelength or if the geometry is complex. I n this case, only the extensional
mode can be identified clearly.

A systematic parameter study was conducted [1] and is showing that the stiffness
constants ¢,;, €, Cn, and ¢ss have a strong influence on the dispersion curves for the lowest
symmetric extensional mode in the low frequency range. In Figure 2, the dispersion curve
for the symmetric mode for wave propagation along the fibers is plotted. In this figure, the
strong effect of ¢,, can be easily observed. In this study, a detailed analysis of the low
frequency symmetric guided waves was conducted and the results corroborated
experimentally.
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Figure 2. The influence of the elastic constant c,, on the dispersion curve of the symmetric
mode.



FORMULATION OF SYMMETRIC MODE DISPERSION EQUATION

Exact Linear I ilastic Solution

Generally, the dispersion equations for guided wave propagation in composite
materials are very complicated and need to be solved numerically. The exact equations for
the dispersion curves for 1.amb wave propagation in multilayered composite laminates has
been derived by many authors (e.g., Mal [5]). However the derived equations are highly
nonlinear and the numerical solution is computationally intensive. In the low frequency range,
approximations can be made to simplify the solution for the lowest extensional mode. A
unidirectional composite laminate is assumed transversely isotropic with symmetric axis aong
the fiber direction, The symmetry axisis defined as the x-axis of the coordinate system and
the stress-displacement relations are given explicitly in[5], where ¢,, ¢;,, ¢, ¢3, ¢5s &€ the
five independent real stiffness constants of the material. We also introduce five constants a,
a,, @3, a, and a; related to C,and the density of the material, p through

a, - C22/P, a, - CH/P, ‘3 = (012 ' C55)/p

- 8))]
a, = (622 - 023)/2P, as 655/9 .
The dispersion equation for the symmetric mode can be expressed as [5]
A jcot({ wh) + Ajcot({,wh)+ Ajcot({ wh) = O ¥

where h=H/2 and H is the plate thickness. In the limit, where frequency approaches zero, i .e
wh — 0, the dispersion equation becomes
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which can be expanded as
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Here the equation (c;, n,, n,) =0 represents the dispersion equation of the limit of the
lowest symmetric mode and n,= cosé, n,=sin ¢, and ¢ is the angle of propagation with the

fibers. This equation can be simplified in specia propagation directions as follows:

a. For propagation along the symmetric axis (O'), the dispersion equation becomes

(PV? e )cpypV? - - Cyty) = O ()
S0 that
— 72
V. . = Css €y - Cifey (6)
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b. For propagation perpendicular to the symmetric axis (90]), the equation can be simplified to
(p V2 - 655)(022p V2 - c222 + 0223)=0 (7)

so that
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For an isotropic material, the solutions (6) and (8) can be reduced to the well know expression
Vv, , = \l'_(i‘;, ZJTC;\L - f§§' ©
' p P n

Approximate Plate Theories

For low frequency guided wave propagation in composite laminates, various
approximate model s have been proposed [8]. 1t iswell known that classical plate theories
underestimate the deflections as well as the stresses and overestimate the phase velocity of the
propagating waves. The error associated with the calculation grows significantly with the
increase in plate thickness or frequency; hence, for dynamic analysis of high values of
thickness-times-frequency, the classical plate theories are inadequate. Mindlin and others [7]
proposed an improved approximation using the first order shear deformation theory and
retaining the transverse shear and rotary inertia of the plate elements. Based on this
theoretical approach the dispersion curves of the first antisymmetric mock can be

approximated very closely to the exact solutions[8]. According to this theory, the
displacement components are assumed to be of the form

U = ulo(xl, Xy D) " X3P (Xy, Xy, 1)

u - ug(xl, X3 1) X3Wp(xy, X 1) (1)

u, = u;)(xl, X, 1)
where u’;, u’, and u’, are the displacement components of a point in the mid-plane, and v,
and y, are the rotations of a line element, originaly perpendicular to the longitudinal plane
about the x, and x, axes, respectively. However, based on this assumption, the lowest
symmetric modes are nondispersive asin the classica plate theory. Thisis the result of
ignoring the fact that u, and «, are even functions of x;, and 4, is an odd function of x, for the

symmetric mode (Figure 1a). In order to obtain a high order approximate symmetric mode
dispersion curve, aterm x, y, isincluded in the out-of-plane displacement ,.

u, =u1°(x1, X, 0
u, = “f(xl’ X 1) (1)

Uy = x3P5(x, X, )




Hence, the governing equation for the symmetric mode can be written as
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The dispersion equation can be derived from the following eigenvalue equation
*(Auklz +A55k22 )+ 0 ~(Ap A5k k 1Ak
~(Ap +As kK ‘(A55k12 +A22k22 )+ ik, =0 (13
; . 2
i ok, 1Ak, Dsskl2 +Dk; 4, +13002
where k, = w/V n,k, = w/V n,and V is the phase velocity. 4; B, and D, are the
commonly used generalized elastic parameters for composite laminates.
Ay = eyl Ay =cpl, Ay = o, A= el Ay = cpll
Dgs = e5slyfps Dy = 4uyfps €4y = (ep7C3)2 (14)

1, = pH, I, = pH12

If the laminate is a transversely isotropic material, then the approximate dispersion equation
can be expressed as

2 . 4 2 2 0. 7
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Inthe limit wH — O this equation is the same as equations (4). Note that high order
approximations such as

(16)
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can lead to more accurate results but they will increase the complexity of the dispersion

equation.
Furthermore, depending on the experimental setup, the measured wave velocity can be

either the phase or the group velocity. The group velocity V, can be calculated from the
characteristic equation of the phase velocity by

_ 9Q/fon
e o0/ov

(17)



EXPERIMENTAL APPROACH

An experimental setup was designed to determine low frequency reasurements of the
dispersion curves. The setup consisted of a contact pitch-catch arrangement, where the pulse
source was induced by breaking a pencil lead on the surface of the test sample. Three
identical receiving transducers were placed in contact with the composite laminate along one
line that defined the angle of propagation and they were spaced at a distance of 25 mm apart.
The transducers were a broadband type with 5 MHz center frequency (Digital Waves, Model
1]1000). For data acquisition a Fracture Wave Detector (Digital Waves, 114000) with four
signa conditioning modules was used. Each of the transducers was connected to a wideband
preamplifier through a signa conditioning module and the signals were digitized and recorded
at arate of 3.125 MHz to 25 MHz. A schematic view of the experimental setup is shownin
Figure 3. A [0],,, 12 x 12 cm’unidirectional AS4/3502 (1 Jercules) graphite/epoxy laminate
was used as the test sample. The laminate was produced using a standard hot-press curing
technique, which led to a laminate thickness of 3.175 mm. The emphasis of the current study
was on the inversion of fiber dominated properties ¢, and c,,. For this purpose material
density of p = 1.56 g/cm’® was used and the matrix dominated materia constants, ¢, ¢,;, and
¢s5, Were predetermined using leaky Lamb waves and the inversion technique described in [1]
as follows: ¢,, =15.6, c,, =7.89, css =5.00 (GPa).

The use of the pencil-lead breaking method as the source of signals was chosen since
the signals that are produced have a low frequency broadband spectra in the range of 50 to
100 KHz. The data for each received signal was transferred to a personal computer and
processed to determine the wave velocity for the analysis of the dispersion curve.
Measurements were made aong different directions with the fibers at 1 5 intervals from ¢° to
90° and the three receivers were placed at a distance 25 mm, 50 mm and 75 mm from the
source. For various directions of the transducers placement, the group velocity was
determined from the time-of-flight measurements using the arrival of the first received signal.

RESULTS AND CONCLUDING REMARKS

Dispersion curves for the exact and approximate solution of the symmetric mode are
plotted in Figure 4. This figure shows the phase velocity of a unidirectional graphite/epoxy at
45° to the fibers. It can be seen that the approximate solution agrees with the exact solutions
for the frequency times thickness values lower than 0,7 M| 1z-mm. Further, this
approximation allows the calculation of modes that can not be obtained using the classical
plate theory.

The measured and calculated group velocity for wave propagation at the 0" to 90° with
the fibers are presented in Figure 5. The elastic constants ¢, ¢,, were determined by
inversion of the measured group velocity and they are: g, = 155.01, ¢,, = 6,44 (GPa). It can
be seen that the calculated curves fit the experimental data quite well. However, it is known
that the group velocity of the extensional mode in this frequency range may not be sensitive to
some of the elastic constants. In order to characterize the material constants from the
measured group velocity, a parametric study was carried out and is presented in Figure 6. In
the figure the group velocity curveis plotted for the lowest symmetry mode. From this
figure, one can easily see that c,, has the strongest influence on the group velocity curve near
0° and decreases toward zero at about 45°.



Signal Conditioning
Modules

_ 486 rc
olololo (] T
olojolo ' L //\ J
O O O O Fradfriciure T ‘,f
O]OIOCO prawave
‘ qJ- E—

[ ]
0y

~<‘) /)
\;\ D P
Lead Break \ R // 9/0/ ;17(‘7‘{\\\
Source ,‘-’,‘;\ P 7 B1000 'I‘ransdu(;erx1
G L
Composite LAnnnE;;;;i‘éfii_;'\ j//'
Figure 3. A schematic description of the experimental setup.
10.0 T B R S
9.0 3 ~ — Exact ) : 45" |
o Approximation
8.0 < ;

7.0 ,?7 - ‘\\\K
: AN

5.0 4

Veloeity (mim/psee)

7T B —————
0.00 0.50 1.00 1.50 2.00 2.50 300
Frequency * Thickness {MHz*mim)

Figure 4. Comparison of dispersion curves for a 1 mm thick graphite/epoxy plate between
exact theory and shear deformation theory for wave propagation at 45" to fibers.
10.0 -

9.0 )\ . CALCULATED
R So600 MEASURED
8.0 ]
7.0 1
3 a,
6.0 -

50E \

: (¢

Group Velocity {mm/usec)

3.0 1 e 0.
p 0
2.0 ~j
1.0 9
]
0 -1‘ —mﬁ'?rrr'rﬂr"’f'r'rh‘r[mrrrr—rrv|
010 20 30 6708090
Propagatlon Angle Degree)

Figure 5, Measured and calculated group velocities for the extensional wave mode s,

propagating at ¢ to 90° with the fibersin a unidirectional graphite/epoxy plate of 3.175 mm
thickness.



MIO - s —— -
F
) ]
5 ]
S0l - - CRIGINAL
<P e €0 PEDUCEL) 208
o 1
o 1
n B
11 6.0 =
3
E 3
> 4.(;
- -
a3 ]
2
LY T ——l
> o ] T
.0 < T
% B \"‘§
& -2
@]
O . 0O rrrer Iy T I T Y TP Ty rrrr rrrTayrrersy Trrr
0.0 2.0 4.0 6.0 8.0 ]

Group Velocity (xnIn/,u.see) Along X,

Figure 6. Influence of the stiffness constant ¢,, on the group velocity surface for the lowest
symmetric mode of a unidirectional graphite/epoxy laminate.

ACKNOWLEDGMENT

This research was supported by the AFOSR under grant F49620-93- 1-0320 monitored

by Dr. Walter Jones. “heJPL. portion of the raw-arch was carried out under a contract with
NASA.

REFERENCES

1.

A.K.Mal, S. Lihand Y. Bar-Cohen, Proceedings of the ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Part 1, A-93-1349-CP, L.a
Jolla, CA, (April 19-22, 1993) pp. 472-484.

AX.Mal and Y. Bat-Cohen, ASME-SES Symposium on \Wave Propagation in Structural
Composites, A X.Maland T.C.T Ting (Eds.) ASME-AMD-Votl. 90, (1988) pp. 1-16.
S.K.Datta and T. Shah, Charkraborty and R. I.. Bratton, ASME-SES Symposium on \WWave
Propagation in Sructural Composites, A.K. Mal and T.C.T Ting (Fids.) ASME-AMD-
Vol. 90, (1988), pp. 1-16.

M. Gorrnan, J. Acoust. Sot. Am. Vol. 90, No. 1, (1991), pp. 358-364.

A. K. Mad, “Wave Propagation in Layered Composite ‘Laminates Under Periodic Surface
Loads’, Wave Motion, Vol. 10, (1988), pp. 257-266.

F.C.Moon, J. Comp. Mater., Val. 6, (1972), pp. 62.

R.D. Mindlin,” Waves and Vibration in Isotropic, Elastic Plates’, Sructural Mechanics.,
(1960), pp. 199-232

S.Lihand A. K. Mal, “On the Accuracy of Approximate Plate Theories for Wave Field
Calculations in Composite Laminates’, Wave Mation, Vol. 21, (1995], pp. 17-34.




